Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Med Entomol ; 61(1): 222-232, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37703355

RESUMO

Senegal has experienced periodic epidemics of dengue in urban areas with increased incidence in recent years. However, few data are available on the local ecology of the epidemic vectors. In October 2021, a dengue outbreak was reported in northern Senegal to the Institute Pasteur de Dakar. Entomologic investigations then were undertaken to identify the areas at risk of transmission and to identify the vector(s). Adult mosquitoes were collected indoors and outdoors at selected households, while containers with water were inspected for mosquito larvae. All the Aedes aegypti (L.) collected were tested for dengue virus NS1 protein using a rapid diagnostic test (RDT), and positive samples were confirmed by real-time RT-PCR. The qRT-PCR positive samples were subjected to whole genome sequencing using Nanopore technology. The majority of the larvae-positive containers (83.1%) were used for water storage. The Breteau and Container indices exceeded the WHO-recommended thresholds for the risk of dengue virus transmission except at 2 localities. Ae. aegypti, the only reputed dengue vector, was collected resting indoors as well as outdoors and biting during the day and night. The NS1 protein was detected in 22 mosquito pools, including one pool of females emerging from field-collected larvae. All NS1-positive results were confirmed by RT-PCR. Virus serotyping showed that the outbreak was caused by DENV-1. This study demonstrates the need for continuous control of adult and aquatic stages of Ae. aegypti to prevent future dengue epidemics in Senegal. RDTs appear to be a promising tool for dengue diagnostics and surveillance.


Assuntos
Aedes , Vírus da Dengue , Dengue , Feminino , Animais , Dengue/epidemiologia , Vírus da Dengue/genética , Mosquitos Vetores , Senegal/epidemiologia , Surtos de Doenças , Larva , Água
2.
Trop Med Infect Dis ; 8(6)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37368735

RESUMO

Crimean-Congo haemorrhagic fever virus (CCHFV) occurs sporadically in Senegal, with a few human cases each year. This active circulation of CCHFV motivated this study which investigated different localities of Senegal to determine the diversity of tick species, tick infestation rates in livestock and livestock infections with CCHFV. The samples were collected in July 2021 from cattle, sheep and goats in different locations in Senegal. Tick samples were identified and pooled by species and sex for CCHFV detection via RT-PCR. A total of 6135 ticks belonging to 11 species and 4 genera were collected. The genus Hyalomma was the most abundant (54%), followed by Amblyomma (36.54%), Rhipicephalus (8.67%) and Boophilus (0.75%). The prevalence of tick infestation was 92%, 55% and 13% in cattle, sheep and goats, respectively. Crimean-Congo haemorrhagic fever virus (CCHFV) was detected in 54/1956 of the tested pools. The infection rate was higher in ticks collected from sheep (0.42/1000 infected ticks) than those from cattle (0.13/1000), while all ticks collected from goats were negative. This study confirmed the active circulation of CCHFV in ticks in Senegal and highlights their role in the maintenance of CCHFV. It is imperative to take effective measures to control tick infestation in livestock to prevent future CCHFV infections in humans.

3.
Diagn Microbiol Infect Dis ; 105(4): 115903, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805620

RESUMO

Management of the COVID-19 pandemic relies on molecular diagnostic methods supported by serological tools. Herein, we developed S-RBD- and N- based ELISA assays useful for infection rate surveillance as well as the follow-up of acquired protective immunity against SARS-CoV-2. ELISA assays were optimized using COVID-19 Tunisian patients' sera and prepandemic controls. Assays were further validated in 3 African countries with variable endemic settings. The receiver operating curve was used to evaluate the assay performances. The N- and S-RBD-based ELISA assays performances, in Tunisia, were very high (AUC: 0.966 and 0.98, respectively, p < 0.0001). Cross-validation analysis showed similar performances in different settings. Cross-reactivity, with malaria infection, against viral antigens, was noticed. In head-to-head comparisons with different commercial assays, the developed assays showed high agreement. This study demonstrates, the added value of the developed serological assays in low-income countries, particularly in ethnically diverse populations with variable exposure to local endemic infectious diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Pandemias , Ensaio de Imunoadsorção Enzimática , Tunísia/epidemiologia , Anticorpos Antivirais
4.
Sci Rep ; 12(1): 22175, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550362

RESUMO

Sero-surveillance can monitor and project disease burden and risk. However, SARS-CoV-2 antibody test results can produce false positive results, limiting their efficacy as a sero-surveillance tool. False positive SARS-CoV-2 antibody results are associated with malaria exposure, and understanding this association is essential to interpret sero-surveillance results from malaria-endemic countries. Here, pre-pandemic samples from eight malaria endemic and non-endemic countries and four continents were tested by ELISA to measure SARS-CoV-2 Spike S1 subunit reactivity. Individuals with acute malaria infection generated substantial SARS-CoV-2 reactivity. Cross-reactivity was not associated with reactivity to other human coronaviruses or other SARS-CoV-2 proteins, as measured by peptide and protein arrays. ELISAs with deglycosylated and desialated Spike S1 subunits revealed that cross-reactive antibodies target sialic acid on N-linked glycans of the Spike protein. The functional activity of cross-reactive antibodies measured by neutralization assays showed that cross-reactive antibodies did not neutralize SARS-CoV-2 in vitro. Since routine use of glycosylated or sialated assays could result in false positive SARS-CoV-2 antibody results in malaria endemic regions, which could overestimate exposure and population-level immunity, we explored methods to increase specificity by reducing cross-reactivity. Overestimating population-level exposure to SARS-CoV-2 could lead to underestimates of risk of continued COVID-19 transmission in sub-Saharan Africa.


Assuntos
COVID-19 , Malária , Humanos , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2 , Anticorpos Antivirais , Reações Cruzadas , Ácido N-Acetilneuramínico , Epitopos
5.
IJID Reg ; 3: 117-125, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35720135

RESUMO

Objectives: A nationwide cross-sectional epidemiological survey was conducted to capture the true extent of coronavirus disease 2019 (COVID-19) exposure in Senegal. Methods: Multi-stage random cluster sampling of households was performed between October and November 2020, at the end of the first wave of COVID-19 transmission. Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies were screened using three distinct ELISA assays. Adjusted prevalence rates for the survey design were calculated for each test separately, and thereafter combined. Crude and adjusted prevalence rates based on test performance were estimated to assess the seroprevalence. As some samples were collected in high malaria endemic areas, the relationship between SARS-CoV-2 seroreactivity and antimalarial humoral immunity was also investigated. Results: Of the 1463 participants included in this study, 58.8% were female and 41.2% were male; their mean age was 29.2 years (range 0.20-84.8.0 years). The national seroprevalence was estimated at 28.4% (95% confidence interval 26.1-30.8%). There was substantial regional variability. All age groups were impacted, and the prevalence of SARS-CoV-2 was comparable in the symptomatic and asymptomatic groups. An estimated 4 744 392 (95% confidence interval 4 360 164-5 145 327) were potentially infected with SARS-CoV-2 in Senegal, while 16 089 COVID-19 RT-PCR laboratory-confirmed cases were reported by the national surveillance. No correlation was found between SARS-CoV-2 and Plasmodium seroreactivity. Conclusions: These results provide a better estimate of SARS-CoV-2 dissemination in the Senegalese population. Preventive and control measures need to be reinforced in the country and especially in the south border regions.

6.
Heliyon ; 8(5): e09459, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35620619

RESUMO

Dengue fever is a mosquito-borne-disease of growing public health importance in Africa. The continuous increase of number and frequency of outbreaks of dengue fever, especially in urban area in Africa underline the need to review the current data available on vectors involved in dengue virus transmission in Africa. Here, we summarized the available data on vectors involved in the transmission of dengue virus in the sylvatic and urban environments, vertical transmission, vector competence studies, and vector control strategies used in Africa. The virus was isolated mainly from Aedes furcifer, Ae. luteocephalus, and Ae. taylori in the sylvatic environment and from Ae. aegypti and Ae. albopictus in the urban areas. Prospective and urgently needed studies on vectors biology, behavior, and alternative control strategies are suggested.

8.
Open Biol ; 12(3): 210288, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35291880

RESUMO

The antibody-dependent respiratory burst (ADRB) assay is a sensitive isoluminol-based chemiluminescence (CL) functional assay designed to assess the capacity of opsonizing antibodies against merozoites to induce neutrophil respiratory burst. ADRB was shown to measure protective immunity against malaria in endemic areas, but the assay needed further improvement to ensure better sensitivity and reproducibility. Here, we adjusted parameters such as the freezing-thawing procedure of merozoites, merozoites's concentration and the buffer solution's pH, and we used the improved assay to measure ADRB activity of 207 sera from 97 and 110 individuals living, respectively, in Dielmo and Ndiop villages with differing malaria endemicity. The improvement led to increased CL intensity and assay sensitivity, and a higher reproducibility. In both areas, ADRB activity correlated with malaria endemicity and individual's age discriminated groups with and without clinical malaria episodes, and significantly correlated with in vivo clinical protection from Plasmodium falciparum malaria. Our results demonstrate that the improved ADRB assay can be valuably used to assess acquired immunity during monitoring by control programmes and/or clinical trials.


Assuntos
Malária , Explosão Respiratória , Animais , Anticorpos Antiprotozoários , Humanos , Imunidade , Malária/prevenção & controle , Merozoítos , Plasmodium falciparum , Reprodutibilidade dos Testes
9.
Am J Trop Med Hyg ; 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35344930

RESUMO

Aedes aegypti plays an important role in the transmission of several arboviruses of medical importance. The availability of information on the blood-feeding preferences of mosquito vectors is a critical step in the understanding of the transmission of human pathogens and implementation of control strategies. In Senegal, no data currently exist on the feeding pattern of Ae. aegypti in urban areas. To fill this gap, Ae. aegypti blood-fed females were collected in five localities by aspiration and using BG Sentinel 2 traps. Collections were carried out monthly between July and November 2019 inside and outside human dwellings. The origin of the blood meal of Ae. aegypti females were identified by an ELISA technique. A total of 1,710 blood-engorged females were examined and showed that Ae. aegypti preferentially fed on human with 78.6% of the identified blood meals. The other blood meals were from animals including dog, cat, horse, cattle, sheep, and rat. This is the first report on the feeding behavior of Ae. aegypti in urban settings in West Africa. It demonstrated that this species is highly anthropophilic.

10.
Viruses ; 13(8)2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34452343

RESUMO

Yellow fever virus remains a major threat in low resource countries in South America and Africa despite the existence of an effective vaccine. In Senegal and particularly in the eastern part of the country, periodic sylvatic circulation has been demonstrated with varying degrees of impact on populations in perpetual renewal. We report an outbreak that occurred from October 2020 to February 2021 in eastern Senegal, notified and managed through the synergistic effort yellow fever national surveillance implemented by the Senegalese Ministry of Health in collaboration with the World Health Organization, the countrywide 4S network set up by the Ministry of Health, the Institut Pasteur de Dakar, and the surveillance of arboviruses and hemorrhagic fever viruses in human and vector populations implemented since mid 2020 in eastern Senegal. Virological analyses highlighted the implication of sylvatic mosquito species in virus transmission. Genomic analysis showed a close relationship between the circulating strain in eastern Senegal, 2020, and another one from the West African lineage previously detected and sequenced two years ago from an unvaccinated Dutch traveler who visited the Gambia and Senegal before developing signs after returning to Europe. Moreover, genome analysis identified a 6-nucleotide deletion in the variable domain of the 3'UTR with potential impact on the biology of the viral strain that merits further investigations. Integrated surveillance of yellow fever virus but also of other arboviruses of public health interest is crucial in an ecosystem such as eastern Senegal.


Assuntos
Febre Amarela/epidemiologia , Febre Amarela/virologia , Vírus da Febre Amarela/fisiologia , Adolescente , Adulto , Aedes/classificação , Aedes/fisiologia , Aedes/virologia , Sequência de Aminoácidos , Animais , Criança , Surtos de Doenças , Feminino , Humanos , Masculino , Mosquitos Vetores/classificação , Mosquitos Vetores/fisiologia , Mosquitos Vetores/virologia , Filogenia , Senegal/epidemiologia , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética , Febre Amarela/transmissão , Vírus da Febre Amarela/classificação , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/isolamento & purificação , Adulto Jovem
11.
J Med Entomol ; 58(6): 2467-2473, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34165556

RESUMO

Aedes aegypti (Linnaeus) is the main vector of most arboviruses in tropical and subtropical urban areas. In West Africa, particularly in Senegal, domestic and wild populations have been described. Both Ae. aegypti aegypti (Aaa) and Ae. aegypti formosus (Aaf) were found in progenies of Ae. aegypti families from several localities of Senegal. However, nothing is known about their resting and trophic behavior, which are key data for vector control. To fill this gap, blood-fed mosquitoes were collected monthly indoors and outdoors with BackPack aspirators and BG-Sentinel 2 traps between July and November 2019 from four urban sites. The enzyme-linked immunosorbent assay technique was used to analyze blood-fed Aaa and Aaf specimens. Both forms were found resting in all investigated places with the highest proportions found in scrap metals (51.7% for Aaa and 44.1% for Aaf) and used tires (19.2% for Aaa and 26.1% for Aaf). Blood-fed Aaf females showed lower occupation of the indoors environment compared to Aaa. Overall, the percentages of single bloodmeals from human were 80.5% (916/1138) for Aaa and 71.1% (263/370) for Aaf. A low frequency of other domestic hosts, including bovine, ovine, and cat were detected for both forms. This study provides the first data on resting and trophic behavior of Aaa and Aaf in Senegal. Both forms showed differences in their resting behavior but fed primarily on human and highlight the risk of arboviruses transmission in urban areas.


Assuntos
Aedes/fisiologia , Cadeia Alimentar , Mosquitos Vetores/fisiologia , Animais , Comportamento Alimentar , Senegal
12.
medRxiv ; 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34013301

RESUMO

Individuals with acute malaria infection generated high levels of antibodies that cross-react with the SARS-CoV-2 Spike protein. Cross-reactive antibodies specifically recognized the sialic acid moiety on N-linked glycans of the Spike protein and do not neutralize in vitro SARS-CoV-2. Sero-surveillance is critical for monitoring and projecting disease burden and risk during the pandemic; however, routine use of Spike protein-based assays may overestimate SARS-CoV-2 exposure and population-level immunity in malaria-endemic countries.

13.
Clin Infect Dis ; 73(12): 2175-2183, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33677477

RESUMO

BACKGROUND: A detailed understanding of the contribution of the asymptomatic Plasmodium reservoir to the occurrence of clinical malaria at individual and community levels is needed to guide effective elimination interventions. This study investigated the relationship between asymptomatic Plasmodium falciparum carriage and subsequent clinical malaria episodes in the Dielmo and Ndiop villages in Senegal. METHODS: The study used a total of 2792 venous and capillary blood samples obtained from asymptomatic individuals and clinical malaria datasets collected from 2013 to 2016. Mapping, spatial clustering of infections, and risk analysis were performed using georeferenced households. RESULTS: High incidences of clinical malaria episodes were observed to occur predominantly in households of asymptomatic P falciparum carriers. A statistically significant association was found between asymptomatic carriage in a household and subsequent episode of clinical malaria occurring in that household for each individual year (P values were 0.0017, 6 × 10-5, 0.005, and 0.008 for the years 2013, 2014, 2015, and 2016 respectively) and the combined years (P = 8.5 × 10-8), which was not found at the individual level. In both villages, no significant patterns of spatial clustering of P falciparum clinical cases were found, but there was a higher risk of clinical episodes <25 m from asymptomatic individuals in Ndiop attributable to clustering within households. CONCLUSION: The findings provide strong epidemiological evidence linking the asymptomatic P falciparum reservoir to clinical malaria episodes at household scale in Dielmo and Ndiop villagers. This argues for a likely success of a mass testing and treatment intervention to move towards the elimination of malaria in the villages of Dielmo and Ndiop.


Assuntos
Malária Falciparum , Malária , Plasmodium , Infecções Assintomáticas/epidemiologia , Estudos Transversais , Humanos , Malária/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Prevalência
14.
PLoS One ; 15(11): e0242576, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33206725

RESUMO

Aedes aegypti is the primary vector of dengue, Zika, yellow fever and chikungunya viruses to humans. In Africa, two subspecies, Ae. aegypti aegypti (Aaa) and Ae. aegypti formosus (Aaf) have been described. Until very recently, it was considered that the two forms were sympatric in East Africa and that only Aaf was present in Central and West Africa. However, recent data suggests that Aaa was also common in Senegal without any clear evidence of genetic differences with Aaf. This study was carried out in different Ae. aegypti populations from Senegal to better clarify their taxonomic status. The larvae, pupae and eggs were collected between July and September 2018 and reared individually to adult stage. For each population, F1 progeny from eggs laid by a single female F0 were reared as sibling samples. The number of pale scales on the first abdominal tergite (T1) and the basal part of the second tergite (T2) were counted. Individuals with no pale scale on T1 were classified as Aaf while those with at least one pale scale on this tergite were classified as Aaa. The morphological variations within families of Aaf were studied across 4 generations. In total, 2400 individuals constituting 240 families were identified, of which 42.5% were heterogeneous (families with both forms). Multivariate statistical analysis of variance including T1 and T2 data together showed that populations were significantly different from each other. Statistical analysis of T1 alone showed a similarity between populations from the southeast while variations were observed within northwest population. The analysis of family composition across generations showed the presence of Aaa and Aaf forms in each generation. The classification of Ae. aegypti into two subspecies is invalid in Senegal. Populations exhibit morphological polymorphism at the intra-family level that could have biological and epidemiological impacts.


Assuntos
Aedes/classificação , Aedes/virologia , Mosquitos Vetores/genética , Aedes/patogenicidade , África Oriental , África Ocidental , Animais , Vetores de Doenças , Variação Genética/genética , Humanos , Mosquitos Vetores/classificação , Filogenia , Senegal/epidemiologia , Febre Amarela/epidemiologia , Febre Amarela/genética , Zika virus/genética , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/genética
15.
BMC Infect Dis ; 20(1): 371, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448116

RESUMO

BACKGROUND: Zika virus (ZIKV, genus Flavivirus, family Flaviviridae) is transmitted mainly by Aedes mosquitoes. This virus has become an emerging concern of global public health with recent epidemics associated to neurological complications in the pacific and America. ZIKV is the most frequently amplified arbovirus in southeastern Senegal. However, this virus and its adult vectors are undetectable during the dry season. The aim of this study was to investigate how ZIKV and its vectors are maintained locally during the dry season. METHODS: Soil, sand, and detritus contained in 1339 potential breeding sites (tree holes, rock holes, fruit husks, discarded containers, used tires) were collected in forest, savannah, barren and village land covers and flooded for eggs hatching. The emerging larvae were reared to adult, identified, and blood fed for F1 production. The F0 and F1 adults were identified and tested for ZIKV by Reverse Transcriptase-Real time Polymerase Chain Reaction. RESULTS: A total of 1016 specimens, including 13 Aedes species, emerged in samples collected in the land covers and breeding sites investigated. Ae. aegypti was the dominant species representing 56.6% of this fauna with a high plasticity. Ae. furcifer and Ae. luteocephalus were found in forest tree holes, Ae. taylori in forest and village tree holes, Ae. vittatus in rock holes. ZIKV was detected from 4 out of the 82 mosquito pools tested. Positive pools included Ae. bromeliae (2 pools), Ae. unilineatus (1 pool), and Ae. vittatus (1 pool), indicating that the virus is maintained in these Aedes eggs during the dry season. CONCLUSION: Our investigation identified breeding sites types and land cover classes where several ZIKV vectors are maintained, and their maintenance rates during the dry season in southeastern Senegal. The maintenance of the virus in these vectors in nature could explain its early amplification at the start of the rainy season in this area.


Assuntos
Aedes/virologia , Secas , Mosquitos Vetores/fisiologia , Estações do Ano , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão , Zika virus/genética , Aedes/classificação , Aedes/fisiologia , Animais , Arbovírus/genética , Feminino , Florestas , Larva , Masculino , RNA Viral/genética , Chuva , Reprodução , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Areia/virologia , Senegal/epidemiologia , Microbiologia do Solo , Árvores/virologia , Infecção por Zika virus/virologia
16.
PLoS One ; 14(4): e0215755, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31022221

RESUMO

INTRODUCTION: Submicroscopic Plasmodium infections are common in malaria endemic countries, but very little studies have been done in Senegal. This study investigates the genetic diversity and complexity of submicroscopic P. falciparum infections among febrile patients in low transmission areas in Senegal. MATERIALS AND METHODS: Hundred and fifty blood samples were collected from febrile individuals living in Dielmo and Ndiop (Senegal) between August 2014 and January 2015, tested for microscopic and sub-microscopic P. falciparum infections and characterized for their genetic diversity and complexity of infections using msp-1 and msp-2 genotyping. RESULTS: Submicroscopic P. falciparum infections were 19.6% and 25% in Dielmo and Ndiop, respectively. K1 and 3D7 were the predominant msp-1 and msp-2 allelic types with respective frequencies of 67.36% and 67.10% in microscopic isolates and 58.24% and 78% in submicroscopic ones. Frequencies of msp-1 allelic types were statistically comparable between the studied groups (p>0.05), and were respectively 93.54% vs 87.5% for K1, 60% vs 54.83% for MAD20 and 41.93% vs 22.5% for RO33 while frequencies of msp-2 allelic types were significantly highest in the microscopy group for FC27 (41.93% vs 10%, Fisher's Exact Test, p = 0.001) and 3D7 (61.29% vs 32.5%, Fisher's Exact Test, p = 0.02). Multiplicities of infection were lowest in submicroscopic P. falciparum isolates. CONCLUSIONS: The study revealed a high submicroscopic P. falciparum carriage among patients in the study areas, and that submicroscopic P. falciparum isolates had a lower genetic diversity and complexity of malaria infections.


Assuntos
Portador Sadio/parasitologia , Febre/parasitologia , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Polimorfismo Genético , Adolescente , Antígenos de Protozoários/genética , Portador Sadio/sangue , Portador Sadio/transmissão , Criança , Feminino , Febre/sangue , Humanos , Malária Falciparum/sangue , Malária Falciparum/transmissão , Masculino , Proteína 1 de Superfície de Merozoito/genética , Proteínas de Protozoários/genética , Senegal , Adulto Jovem
17.
Malar J ; 18(1): 48, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30791901

RESUMO

BACKGROUND: Malaria is a leading cause of mortality and morbidity in tropical countries, especially in sub-Saharan Africa. In Senegal, a control plan implemented in the beginning of the 2000s has enabled a substantial reduction of mortality and morbidity due to malaria. However, eradication of malaria requires a vaccine that protects against Plasmodium falciparum the deadliest species of the parasite that causes this disease. Plasmodium falciparum is characterized by an extensive genetic diversity that makes vaccine development challenging. In this study, the diversity of P. falciparum isolates was analysed from asymptomatic children residing in the district of Toubacouta, Senegal. METHODS: A nested PCR approach was used to perform genotyping of the msp-1 and msp-2 loci in samples from 87 asymptomatic children infected with P. falciparum, collected during a cross sectional survey in November and December 2010. Parasite densities in blood samples were determined by microscopic examination and statistical analyses were used to identify association of parasite genotype and parasitaemia. RESULTS: Genotyping was successful in 84/87 and 82/87 samples for msp-1 and msp-2, respectively. A strong genetic diversity was found with a total of 15 and 21 different alleles identified for msp-1 and msp-2, respectively. RO33 was the most frequent allelic family of msp-1 followed by MAD20, then by K1. Regarding msp-2 allelic families, 3D7 was more common than FC27. Multiple infections were predominant, since 69% and 89% of the samples genotyped for msp-1 and msp-2 showed more than one clone of P. falciparum with complexity of infection (COI) of 2.5 and 4.7, respectively. Expected heterozygosity (HE) was 0.57 and 0.55 for msp-1 and msp-2, respectively. Interestingly, polyclonal infections were significantly associated with higher parasitaemia. CONCLUSIONS: The strong genetic diversity of P. falciparum clones and the association of polyclonal infection with high parasitaemia call for a multi-allelic approach in the design of vaccine candidates for efficient malaria eradication.


Assuntos
Infecções Assintomáticas , Variação Genética , Genótipo , Malária Falciparum/parasitologia , Parasitemia/parasitologia , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Animais , Antígenos de Protozoários/genética , Criança , Pré-Escolar , Coinfecção/parasitologia , Estudos Transversais , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Microscopia , Carga Parasitária , Reação em Cadeia da Polimerase , Senegal
18.
Vaccine ; 35(48 Pt B): 6720-6726, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29042203

RESUMO

Identification of parasite antigens targeted by immune effector mechanisms that confer protection against malaria is important for the design of a multi-component malaria vaccine. Here, the association of antibodies reacting with the Plasmodium falciparum merozoite surface protein-4 (MSP4) with protection against clinical malaria was investigated in a Senegalese community living in an area of moderate, seasonal malaria transmission. Blood samples were collected at the end of an 8-month long dry season without any recorded parasite transmission from 206 residents enrolled in a prospective follow-up study. Active daily clinical monitoring was implemented during the subsequent five months. Entomologic monitoring documented parasite transmission during the first three months of follow-up. Serum IgG levels were determined by ELISA against three MSP4 baculovirus-encoded recombinant protein constructs, namely the full-length MSP4p40, MSP4p30 devoid of a highly polymorphic sequence stretch and the conserved C-terminal EGF-containing MSP4p20, as well as against a merozoite crude extract. Community seroprevalence against all three constructs was quite high, the lowest being against MSP4p30. Seroprevalence and antibody levels against the three MSP4 constructs were age-dependent. IgG1 dominated the anti-MSP4p20 responses, while both IgG1 and IgG3 were observed against MSP4p40. Anti-MSP4 antibodies were associated with the antibody-dependent respiratory burst (ADRB) activity in a functional assay of merozoite phagocytosis by polymorphonuclear cells. Importantly, high antibody levels against each of the three MSP4 constructs at the end of the dry season were associated with reduced morbidity during the subsequent transmission season in an age-adjusted Poisson regression model (IRR = 0.65 [0.50-0.83], P<0.001 for responses over the median values). These data are consistent with a protective role for the naturally acquired anti-MSP4 antibodies and support further development of MSP4 as a candidate component of malaria vaccine.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Idoso , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina G/sangue , Malária Falciparum/prevenção & controle , Masculino , Merozoítos/imunologia , Pessoa de Meia-Idade , Neutrófilos/imunologia , Fagocitose , Estudos Prospectivos , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Explosão Respiratória/imunologia , Senegal/epidemiologia , Estudos Soroepidemiológicos , Adulto Jovem
19.
Malar J ; 16(1): 409, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29020949

RESUMO

BACKGROUND: Evaluation of local Plasmodium falciparum malaria transmission has been investigated previously using the reversible catalytic model based on prevalence of antibody responses to single antigen to estimate seroconversion rates. High correlations were observed between seroconversion rates and entomological inoculation rates (EIR). However, in this model, the effects of malaria control interventions and clinical episodes on serological measurements were not assessed. This study monitors the use of antibody responses to P. falciparum crude extracts for assessing malaria transmission, compares seroconversion rates estimated from longitudinal data to those derived from cross-sectional surveys and investigates the effects of malaria control interventions on these measures in an area of declining malaria transmission. In addition, the validity of this model was evaluated by comparison with the alternative model. METHODS: Five cross-sectional surveys were carried out at the end of the wet season in Dielmo, a malaria-endemic Senegalese rural area in 2000, 2002, 2008, 2010 and 2012. Antibodies against schizonts crude extract of a local P. falciparum strain adapted to culture (Pf 07/03) were measured by ELISA. Age-specific seroprevalence model was used both for cross-sectional surveys and longitudinal data (combined data of all surveys). RESULTS: A total of 1504 plasma samples obtained through several years follow-up of 350 subjects was used in this study. Seroconversion rates based on P. falciparum schizonts crude extract were estimated for each cross-sectional survey and were found strongly correlated with EIR. High variability between SCRs from cross-sectional and longitudinal surveys was observed. In longitudinal studies, the alternative catalytic reversible model adjusted better with serological data than the catalytic model. Clinical malaria attacks and malaria control interventions were found to have significant effect on seroconversion. DISCUSSION: The results of the study suggested that crude extract was a good serological tool that could be used to assess the level of malaria exposure in areas where malaria transmission is declining. However, additional parameters such as clinical malaria and malaria control interventions must be taken into account for determining serological measurements for more accuracy in transmission assessment.


Assuntos
Doenças Endêmicas , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Plasmodium falciparum/fisiologia , Fatores Etários , Anticorpos Antiprotozoários/sangue , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Masculino , Modelos Teóricos , Prevalência , Esquizontes/fisiologia , Senegal/epidemiologia , Estudos Soroepidemiológicos
20.
PLoS One ; 12(8): e0182189, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771615

RESUMO

BACKGROUND: In the progress towards malaria elimination, the accurate diagnosis of low-density asymptomatic infections is critical. Low-density asymptomatic submicroscopic malaria infections may act as silent reservoirs that maintain low-level residual malaria transmission in the community. Light microscopy, the gold standard in malaria diagnosis lacks the sensitivity to detect low-level parasitaemia. In this study, the presence and prevalence of submicroscopic Plasmodium carriage were investigated to estimate the parasites reservoir among asymptomatic individuals living in low transmission areas in Dielmo and Ndiop, Senegal during the dry season. METHODS: A total of 2,037 blood samples were collected during cross-sectional surveys prior the malaria transmission season in July 2013 (N = 612), June 2014 (N = 723) and June 2015 (N = 702) from asymptomatic individuals living in Dielmo and Ndiop, Senegal. Samples were used to determine the prevalence of submicroscopic Plasmodium carriage by real time PCR (qPCR) in comparison to microscopy considered as gold standard. RESULTS: The prevalence of submicroscopic Plasmodium carriage was 3.75% (23/612), 12.44% (90/723) and 6.41% (45/702) in 2013, 2014 and 2015, respectively. No Plasmodium carriage was detected by microscopy in 2013 while microscopy-based prevalence of Plasmodium carriage accounted for only 0.27% (2/723) and 0.14% (1/702) in 2014 and 2015, respectively. Plasmodium falciparum accounted for the majority of submicroscopic infections and represented 86.95% (20/23), 81.11% (73/90) and 95.55 (43/45) of infections in 2013, 2014 and 2015 respectively. CONCLUSION: Low-density submicroscopic asymptomatic Plasmodium carriage is common in the study areas during the dry season indicating that traditional measures are insufficient to assess the scale of parasite reservoir when transmission reaches very low level. Control and elimination strategies may wish to consider using molecular methods to identify parasites carriers to guide Mass screening and Treatment strategies.


Assuntos
Malária/diagnóstico , Malária/prevenção & controle , Malária/parasitologia , Plasmodium/isolamento & purificação , Estações do Ano , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Portador Sadio/diagnóstico , Portador Sadio/epidemiologia , Portador Sadio/parasitologia , Criança , Pré-Escolar , Estudos Transversais , DNA de Protozoário/isolamento & purificação , DNA de Protozoário/metabolismo , Eritrócitos/parasitologia , Feminino , Humanos , Lactente , Malária/epidemiologia , Masculino , Pessoa de Meia-Idade , Plasmodium/genética , Senegal/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA